Sparse Matrix Multiplication
Given twosparse matrices A and B, return the result of AB.
You may assume that A's column number is equal to B's row number.
A = [
[ 1, 0, 0],
[-1, 0, 3]
]
B = [
[ 7, 0, 0 ],
[ 0, 0, 0 ],
[ 0, 0, 1 ]
]
| 1 0 0 | | 7 0 0 | | 7 0 0 |
AB = | -1 0 3 | x | 0 0 0 | = | -7 0 3 |
| 0 0 1 |
题意:实现稀疏矩阵相乘,稀疏矩阵的特点是矩阵中绝大多数的元素为0,而相乘的结果是还应该是稀疏矩阵,即还是大多数元素为0,那么我们使用传统的矩阵相乘的算法肯定会处理大量的0乘0的无用功,所以我们需要适当的优化算法
图解
分析
代码
class Solution {
public int[][] multiply(int[][] A, int[][] B) {
int m = A.length, n = A[0].length;
int nB = B[0].length;
int [][] res = new int[m][nB];
for(int i = 0; i < m; i++){
for(int k = 0; k < n; k++){
if(A[i][k]!=0){
for(int j = 0; j<nB; j++){
if(B[k][j]!=0) res[i][j] += A[i][k] *B[k][j];
}
}
}
}
return res;
}
}