Product of Array Except Self
Given an array ofnintegers wheren> 1,nums
, return an arrayoutput
such thatoutput[i]
is equal to the product of all the elements ofnums
exceptnums[i]
.
Solve it without division and in O(n).
For example, given[1,2,3,4]
, return[24,12,8,6]
.
Follow up:
Could you solve it with constant space complexity? (Note: The output array does not count as extra space for the purpose of space complexity analysis.)
题意:这道题给定我们一个数组,让我们返回一个新数组,对于每一个位置上的数是其他位置上数的乘积,并且限定了时间复杂度O(n),并且不让我们用除法。
分析
Given numbers[2, 3, 4, 5]
, regarding the third number 4, the product of array except 4 is2*3*5
which consists of two parts: left2*3
and right5
. The product isleft*right
. We can get lefts and rights:
Numbers: 2 3 4 5
Lefts: 2 2*3 2*3*4
Rights: 3*4*5 4*5 5
Let’s fill the empty with 1:
Numbers: 2 3 4 5
Lefts: 1 2 2*3 2*3*4
Rights: 3*4*5 4*5 5 1
We can calculate lefts and rights in 2 loops. The time complexity is O(n).
We store lefts in result array. If we allocate a new array for rights. The space complexity is O(n). To make it O(1), we just need to store it in a variable which isright
in @lycjava3’s code.
代码
class Solution {
public int[] productExceptSelf(int[] nums) {
int n = nums.length;
int[] res = new int[n];
// Calculate lefts and store in res.
int left = 1;
for (int i = 0; i < n; i++) {
if (i > 0)
left = left * nums[i - 1];
res[i] = left;
}
// Calculate rights and the product from the end of the array.
int right = 1;
for (int i = n - 1; i >= 0; i--) {
if (i < n - 1)
right = right * nums[i + 1];
res[i] *= right;
}
return res;
}
}